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Abstract. Assuming q-deformed “mutation relations for the fermions, an extension of the 
standard Lipkin H3miltonia is presented. The usual quasi-spin representation of the smdard 
Lipkin model is also obtained in this q-deformed framework. A variationauy obtained energl 
functional is used to analyse the phase vansition associated with the spherical s y m t r y  breaking. 
The only phase transitions in this q-deformed model are of second order As an outcome of this 
analysis a critical parameter is obtained which is dependent on the deformation of the algebra 
and on the number of particles. 

1. Introduction 

In the last decade a great effort has been devoted to the development and understanding 
of deformed algebras, although in many cases their direct physical interpretation is 
incomplete or even completely lacking. In some cases, like the xxz-model where the 
ferromagnetidantifermagnetic nature of a spin-; chain of length N can be simulated 
through the introduction of a q-deformed algebra, or the rotational bands in deformed nuclei 
which can be fitted instead of using a variable moment of inertia (VMI-model) via a q-rotor 
Hamiltonian, the physical meaning of such a deformation is clearly established. From the 
original studies, which appeared in connection with problems related to solvable statistical 
mechanics models [I]  and quantum inverse scattering theory [Z], a solid development 
has emerged which encompasses nowadays various branches of mathematical problems 
related to physical applications, such as deformed superalgebras [3], knot theories [4], 
non-commutative geometries [SI and so on. In this context, the introduction of a q- 
deformed bosonic harmonic oscillator, derived in such a way to pass from a su(2) symmetry, 
originally present in the non-deformed case, to asu,(Z) one, gave origin to new commutation 
relations which have been extensively studied in several papers [6,7], all these results being 
unambiguously obtained due to the underlying sf&) structure [SI. 

The many-body problem is another mainstream area in physics and, in all its complexity, 
it calls for the use of approximate methods or the development of simple solvable models 
which should entail most of the relevant physics combined with a technically simple 
treatment [9]. A long heritage of such models is available in the nuclear physics literature, 
among which the Lipkin model [IO] has been extensively used as a laboratory to test 
approximate methods and to point out the main features of the many-body systems. 
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Nowadays, an important problem is to understand how the basic characteristics and 
the general behaviour of many-body systems are modified when the underlying fermionic 
algebra is deformed. The use of q-deformed algebra in the description of some many-body 
systems has lead to the appearance of new features when compared to the non-deformed 
case. In this connection we mention some examples: (i) in the q-oscillator many-body 
problem [?I it was shown that, when promoting the symmetries of the standard oscillator 
system to q-symmetries, the spectrum of the system is found to exhibit interactions between 
the levels of the individual oscillators; (ii) the revivals phenomenon present in the Jaynes- 
Cummings model [ll] disappears when the original su(2) symmetry is deformed; (iii) an 
extensive study of a deformed collective Lipkin Hamiltonian was performed and the q- 
deformed second-order phase transition was found to be suppressed [12]. The second-order 
phase transition associated with the spherical symmetry breaking in the quasi-spin space 
[13] for this deformed model was also discussed in the q-coherent states framework [14]. 

In the present paper we return to the original fermionic Lipkin Hamiltonian and extend 
it to a new one written in terms of q-deformed fermionic operators. Our main goals in 
such a study are: (i) to try to get some idea on the influence of this q-deformation and (ii) 
to investigate if new physical phenomena comes out via the introduction of the deformed 
algebra. Similarly to the extraction of a collective Lipkin Hamiltonian in terms of su(2) 
quasi-spin operators from the original fermionic one, we show here that such a construction 
in terms of su,(2) quasi-spin operators written now in terms of qdeformed fermionic 
operators, is still valid. This new Hamiltonian is very different from that discussed in 
112,141 in that the mean-field term embodies now the effects of the deformation of the 
algebra giving rise to a change in the one-body energy spectrum in a similar way to the 
q-oscillator many-body problem 171. 

We study the only phase transitions in this q-deformed model, which are of second 
order, following Holzwarth 1131, i.e. the spherical symmetry breaking in the quasi-spin 
space, with this new collective deformed Hamiltonian. q-coherent states are used to define 
0 and y, as collective variables in terms of which the phase transition is analysed through 
the behaviour of the variationally obtained ground-state energy. 

This paper is organized as follows. In section 2 we lay the basis of the q-fermionic 
extension of the standard Lipkin model (SLM) and the new collective deformed Lipkin 
Hamiltonian is constructed. Section 3 contains the basic definitions of the q-coherent states 
and the derivation of the ground-state energy functional. Finally, in section 4 the main 
results and conclusions are presented. 

2. The q-deformed Lipkin model 

Since the standard Lipkin model has been widely studied in the literature [IS]. we will only 
present here its main features. 

In the SLM a system of N fermions is distributed in two N-fold degenerated levels. 
These two levels are distinguished by a quantum number U whose values +1 and -1 refer 
to the upper and lower levels respectively; they are separated by an energy gap E .  The 
degeneracy of each level is taken care of by a quantum number p with values ranging from 
1 to N. 

The SLM Hamiltonian is written as 

The main advantage of this model, as was originally shown by Lipkin [lo], is that it is 
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exactly soluble, its collective excitations being more clearly studied in the su(2) quasi-spin 
formalism. As a result, a second-order phase transition is obtained from the calculated 
collective spectrum in the N + 00 limit [161. 

Recently [U], the SLM bas been studied in the q-deformed su(2)  quasi-spin formalism 
where q is the deformation parameter of the algebra. The usual su (2) algebra is recovered 
when q + 1. In this paper the phase transition was analysed in the q-deformed context and 
the main result of the analysis was the suppression of the phase transition as q increases. 
A problem akin to this was studied in another paper by one of the authors using deformed 
su(2)  coherent states in a variational approach [14]. On the other hand, a similar result 
was obtained in a study of the revivals which appear in the Jaynes-Cummings model [ll],  
which are suppressed in the deformed case [17]. 

From a more fundamental point of view, the question on the possibility of constructing 
a q-deformed Lipkin Hamiltonian from the basic fermion operators is a very important one. 
The hint to answer this question is the study of a system of M bosonic harmonic oscillators 
developed by Floratos [7], where the full Hamiltonian is not just the sum of individual 
oscillators but rather a sum of terms involving coproducts, the construction being necessary 
in order to preserve the U(M) symmetry when the algebra is deformed. Although we 
have not mathematically proved that the derived expressions satisfy a genuine fermionic 
coproduct, the adopted form is important to obtain the q-deformed quasi-spin operators, 
as will be seen later. Following the idea of Floratos, the deformed fermionic Lipkin 
Hamiltonian, with the deformation parameter expressed as q = exp y ,  is given by 

H = X o + f i  (2.2) 
with 

310 = - reZydd,(p){Xp+ cosh yhpl  - coshyhptXp(}e-Zyd,(p) (2.3) 
E 

2 P  

and 

(2.8) 
In the above expressions the fermionic operators obey q-deformed anticommutation 

relations below [3,18]; however, it is worth noting that the adopted q-deformed fermionic 
extension of the usual anticommutation relations are by no means unique in the literature 
[191. 

(2.9) 

t I 
~ P T W  =aptci)a~t(r) - i. 

ap.af + qap,ap, f = &a" 

{apa,ap~o,) = { a p v , a ~ @ , )  t t  = O  v p , p ' , u , u '  (2.10) 

~apo,a;,,J = 0 P # P' (2.11) 

l a p s ,  ap..) t = 0 ' 0  # 6' (2.12) 



(2.13) 
(2.14) 

The q-deformed number operator h,, in the above equations is equal to (hpv + f )  only 
at the level of the physical representation. However, at the level of the algebra they are in 
general different. 

Starting from equation (2.3) and using equations (2.9H2.14) it is straightforward but 
tedious to obtain 

(2.15) 

Until now we have been working with the deformed fermionic operators. The question 
now is to see if, as was done long ago in nuclear physics [ZO] for the non-deformed 
case, it is possible to construct a q-deformed quasi-spin algebra from the underlying q-  
deformed fermionic operators. Since our main interest is to study the collective excitations, 
in particular the phase transitions, we must cons@uct the corresponding suq(2) quasi-spin 
Hamiltonian in order to recover the original simplicity of the SLM. We, therefore, introduce 
the operators 

(2.16) 

(2.17) 

s; ap,apT t (2.18) 

which satisfy the following commutation relations 

(2.19) 

(2.20) 

where the bracket on the right-hand side of equation (2.20) is defined in the standard way 

Furthermore, we define the qdeformed quasi-spin operators 

so 5 cs; 
P 

(2.21) 

(2.22) 

which satisfy the same commutation relations (2.19H2.20). It is important to emphasize 
the use of h,, instead of i,,, as usually performed in the literature in the bosonic case. As 
stated before, they are equivalent at the level of the representation. 

The action of the SO, Si operators on the deformed IS. s) basis [21] is given by 

and, in particular, it is worth noting that for the Lipkin ground-state multiplet the basis 
states correspond to 

(2.26) 
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The q-deformed Lipkin Hamiltonian can then be rewritten in terms of So and S+ as 

sinh(2yso) + -(s: + sZ). (2.27) 
E V 

2 
It is easy to verify that this expression goes back to the SLM Hamiltonian when y + 0 

(or q -+ l), as do the commutation relations of the q-deformed quasi-spin operators 
We should point out here the difference between the Hamiltonian in equation (2.27) and 

the version of the Lipkin Hamiltonian used in previous papers [12,14]. The difference lies 
in the mean-field term which now embodies q-deformation effects arising from a careful 
treatment of the q-deformation of the algebra already at the fermionic level. 

3. The q-deformed Lipkin Hamiltonian in the S I L , ( ~ )  coherent states 

Recently, in the works of Quesne and JurEo [22] q-analogues of the su(2) Perelomov 
coherent states [23] were defined for the su,(2) quantum algebra in terms of a q-exponential. 
Following [ 141 we define the q-analogue to the su (2) coherent state 

H =  4 stnh(y/Z) 

lz) e?- IS. s) (3.1) 
where z is a complex number (i is its complex conjugate) which for later convenience will 
be parametrized as 

e 
z = tan -e'+ (3.2) 2 

where 0 E [O, n]. 4 E [O, Za] and the q-exponential is 

(3.3) 

with [ n ] , !  = [n],[n - 11, . . . [119. We would like to note that our definition for the suq(2) 
coherent state is based on the maximum weight, whereas in [22] the minimal one was used. 

Defining the q-binomial coefficient 

equation (3.1) can be rewritten as 

whose normalization i s  given by 

(3.4) 

We now use the coherent state (3.1) as a trial state for the q-deformed Lipkin 
Hamiltonian ground state. Thus, we get 

(3.7) 
(zlHlz) E(zlsinh(2ySo)lz) + V(zlS: + S!~Z) -= 

(zlz) 4sinh (y /~) (z lz)  2(212) 
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and 
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D ( y , e )  = 1 +sinhZ[$(N- I)]sina8. 

We can normalize equation (3.7) as 

(3.10) 

(3.11) t ( Z I W  [NI, { cose ,y sin'ecosw 
E(0,  +, y. N )  = - = - - 

E,(zIz) 2 w , e )  + 2 w , e )  
where 

E 
E -- 
- 211/21, 

is the q-deformed energy spacing and 

V [ N  - 114 

€4 
X =  (3.12) 

is an effective coupling strength. 

4. Results and conclusions 

Equation (3.11) is the expression for the variational energy from which we should extract 
the main information about the Lipkin model ground state, as described by the q-deformed 
coherent state. We should note that the energy depends on the deformation of the algebra 
and is proportional to [NI , ,  whereas the terms enclosed by the curly brackets are functions 
of N and y through the product y(N - 1) and of the effective coupling strength x .  

In order to study the ground-state energy we must require the conditions 

to be satisfied. 
as global minima, the interesting physics lying 

on the interplay between 0 and yN. The second equation exhibits two solutions with similar 
features as those obtained in the non-deformed Lipkin model, the first one being 

The first equation gives # = f and 

sine = 0 (4.3) 
completely equivalent to the standard case, while the second one 

(cos e - 4~ sinZ e) 
~ i - c s i n ~ e  

- I - COS e - 2c case = O  

where 

C = sinh' [ $ ( N  - I)] 

(4.4) 

(4.5) 

now embodies the effects of the deformation of the algebra. Equation (4.4) is quadratic in 
cos0 giving rise only to second-order phase transitions. 

Equation (4.4) allows us to calculate the critical value of the strength parameter x 
characterizing the phase transition whose analytical expression is then 

xc = 1 + 2sinhz [$ ( N  - I)]. (4.6) 
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In the same fashion as discussed by Holzwarth [ 1 9 ,  we would expect here the second- 
order phase transition, characterizing the spherical symmetry breaking in the quasi-spin 
space, to show up as the appearance of two symmehical minima shifted from the origin and 
a maximum at the position of the old minimum. However, contrary to the standard case 
where xc = 1, here the critical value of the coupling constant depends on the parameter 
y(N - 1). This implies that now the phase transitions depend not only on the strength of 
the interaction but also on the deformation of the algebra and on the number of particles 
through the product y(N - 1). 

5 

F w e  1. (a) and (b) show 3~ views of the scaled energy surfaces (& = 2 E / [ N I q )  for x = 1 
and 3 respectively, as a function of y ( N  - I )  and of the order parameter b" = n - 8. 0) and 
( d )  show sections of the energy surfaces-at y(N - 1) = I (full curve). 3 (dashed curve) and 
S (dot-dashed curve). The behaviour of E for both global minima at q = f and 2 is shown 
together by extending the domain of 8' from -n to z. 

Figures l(a) and (6) show scaled energy surfaces for different values of x as a function 
of y(N - 1) and the order parameter 6' = R - 6 [16], whereas figures I(c) and (d) depict 
sections of the corresponding 3D-piCtUreS for different values of y(N - 1). There is a 
striking difference between the pictures on the left- and right-hand sides of figure 1, namely 
the number of minima. The reason for this behaviour in the first case is that ,yc, calculated 
by expression (4.6), is always greater than that for any value of y > 0, as can be seen 
in figure 2. This in turn means that there will be no phase transition when one increases 
the deformation of the algebra for a fixed x < 1. Figures l(6) and (d), however, present 
a gradual collapse of the two minima, characterizing the phase transition, in a new one at 
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CLO 
0.0 a5 1.0 1.5 2.0 

'6 (N-1) 

4.0 I I I I I I I I 

2.0 - 

CLO I I I I I I I 

0.0 a5 1.0 1.5 2.0 
'6 (N-1) 

Figure 2. The critical value of ,y as a function of y(N - I). The dashed curves indicate the 
region of existence of the phase transition. 

8' = 0 as y increases. For low values of y(N - 1). x = 3 is greater than the value of xc ,  as 
can be seen from figure 2. In this range of y(N- 1) we clearly identify the phase transition. 
However, for values of y(N - 1) for which xE > 3, no phase transition is allowed. 

To summarize the main results of the present paper we would like initially to stress 
the importance of a careful treatment of the q-deformation, already at the fermionic level, 
in order to correctly take into account the effects in a many-body system. In the present 
case this gives rise to a q-dependent mean field as shown in equation (2.27). As a second 
aspect, we point out we have also obtained a critical value of x ,  equation (4.6), which is a 
function of y(N - 1). This means that a universal character can no longer be assigned to 
,y as a system-independen! indicator of the phase transition in a qdeformed system. 
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